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Universal Systematic Sequence of Even-Tempered 
Gaussian Primitive Functions in Electronic 
Correlation Studies 
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The possibility of developing a universal systematic sequence of even- 
tempered  Gaussian primitive functions for atomic and molecular electronic 
structure studies is examined. The radial beryllium-like ions are used to 
demonstra te  this approach both within the Har t r ee -Fock  model  and by 
including correlation effects. Correlation energies are computed using the 
diagrammatic many-body  per turbat ion theory. The Har t ree  extrapolation 
procedure  is used to obtain empirical upper  bounds to the basis set limit and 
the procedure of Schmidt and Ruedenberg  is employed to obtain empirical 
lower bounds for the basis set limit. The convergence propert ies of the 
calculations with respect to the size of the basis set are examined. 
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1. Introduct ion 

In most applications of quantum mechanics to atoms and molecules the N-  
electron wave function is expressed in terms of the N t h  rank direct product  space 
generated by a finite dimensional single particle space. The accuracy of atomic and 
molecular calculations is ultimately determined by the degree of completeness of 
the basis set used to parameter ise  the single particle functions employed in the 
construction of the N-elec t ron  wave function. No amount  of configuration mixing 
will compensate  for a poor  choice of basis functions. The result obtained by 
performing a full configuration interaction calculation, within a given N t h  rank 
direct product  space, will only approach the complete configuration interaction 
result as the basis set approaches completeness.  
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In this paper, two recent developments in the construction of basis sets for 
accurate atomic and molecular calculations are combined. The concept of a 
universal basis set [1-5] is employed in conjunction with a systematic sequence of 
basis sets [6, 7] to examine convergence of calculations with respect to basis set 
size. 

Accurate calculations necessitate the use of moderately large basis sets. Large 
basis sets have, of course, a considerable degree of flexibility and are, therefore, 
transferable from system to system with little loss in accuracy. These considera- 
tions have led to the concept of a universal basis set; a single basis set which can 
be used for any atom without regard to its nuclear charge or molecular environ- 
ment. For example, recently reported calculations on the nitrogen, carbon 
monoxide and boron fluoride molecules using a universal basis set of even- 
tempered Slater exponential functions have led to some of the most accurate ab 
initio correlation energies for these systems reported to date [5]. The same list of 
integrals over the Slater basis functions was used in calculations on each of these 
molecules at a given nuclear geometry. 

Ruedenberg and coworkers [6, 7] have recently devised schemes for systematic- 
ally extending basis sets of the even-tempered type. They have applied their 
scheme to a considerable number of atomic systems using sets of Gaussian 
primitives within the Har t ree-Fock molecular orbital model. In the work of 
Ruedenberg and his coworkers a different sequence of basis sets is used for 
different atoms. The present author has also examined the application of 
systematic schemes for extending basis sets in atomic calculations which include 
electron correlation effects [8]. Empirical procedures have been devised to 
provide empirical upper and lower bounds for the basis set limit. 

In using the large basis sets which are required in accurate calculations, problems 
can arise from computational linear dependence and numerical instability. The 
degree of linear dependence can be reduced by using an even-tempered basis set 
[9-14]. The primitive basis set cannot become linearly dependent  if the even- 
tempered concept is employed. 

The use of a universal systematic sequence of even-tempered basis sets in electron 
correlation studies is proposed and discussed in this paper. In this work, the same 
sequence of basis sets will be used for different atoms. Illustrative calculations for 
radial beryllium-like ions are described, both within the Har t ree-Fock model and 
including electron correlation. Theoretical and computational aspects of the 
present work are described in Sect. 2. The results are presented in Sect. 3 and 
discussed in Sect. 4. 

2. Theoretical and Computational Aspects 

The orbital exponents of an even-tempered basis set are defined by the geometric 
series 

~'k=a/3 k, k = l , 2  . . . . .  n 
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This ensures that the metric matrix has the structure 

Si, j = Si+I,j+I Vi,j 

Ruedenberg et al. [9] suggest that such a "basis 'covers' the Hilbert space evenly, 
i.e. that no part of the Hilbert space intercepted by the basis set is covered better 
than any other part, except near the boundary of this finite subspace". 

Since ce -~ 0,/3 -~ 1 and/3" ~ ~ as the size of the basis set, n, tends to infinity, the 
empirical forms 

ln  ln  f l  = b ln  n + b ' 

and 

lnc~ = a  In ( f l -  1 ) + a '  

have been suggested [7] as a systematic scheme for extending even-tempered 
basis sets. This scheme has been shown to be useful within the Har t ree-Fock 
model [6, 7] and in calculations [8] which take account of electron correlation 
effects. In this paper, we take the values of a, a' ,  b and b' given by Schmidt and 
Ruedenberg [7] for the beryllium atom; namely 

a = +0.3274 

a '  = -4 .1916  

b = -0 .5230  

b ' =  +1.3299 

and use these basis sets to perform calculations on the series of beryllium-like ions 
Li-,  Be, B +, C 2+, N 3+, O 4+, F s+ and Ne 6+. 

The calculations reported in this paper were performed on the IBM 370/165 
computer  at the Science Research Council's Daresbury Laboratory.  

Integrals over Gaussian functions, self-consistent-field calculations and orbital 
transformation phases of the computations were performed by means of the 
programs described in reference [15]. Basis sets comprising n s functions (denoted 
by [ns]) where n = 6, 8, 10, 12, 14, 16, 18, 20 were used in the calculations. The 
same integrals over the Gaussian basis functions were used in all of the cal- 
culations reported in this paper for a given n. 

The electron correlation energies were calculated by means of the diagrammatic 
many-body perturbation theory [16]. The perturbation expansion with respect to 
the Har t ree-Fock  model zero-order  hamiltonian, that is the expansion of MNler 
and Plesset [-17, 18], was taken to third order and the [2/1] Pad6 approximants to 
the correlation energy constructed [19]. The [2/1] Pad6 approximants have 
special invariance properties which makes their use attractive [20, 21]. Computer  
programs for performing these correlation energy calculations have been 
described in detail previously [22-24]. 
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3. Results 

The results of the matrix Har t ree-Fock calculations on each of the beryllium-like 
species considered in this work are presented in Table 1. The correlation energy 
corrections obtained by taking the many-body perturbation series to third-order 
and constructing [2/1] Pad6 approximants are given in Table 2. In Fig. 1, the 
quantity In (E [n"s ] - E  [n's ]) is plotted as a function of the basis set size, n, for all 
of the results presented in Table 1. The calculated correlation energies are plotted 
in Fig. 2 as a function of the basis set size. 

4. Discussion 

All of the energy values given in Table 1 decrease monotonically with increasing 
size of the basis set. The matrix Har t ree-Fock energies for the Be atom and the 
positive ions appear to converge fairly uniformly for basis sets larger than [12s]. 
For the Li- ion, the only negatively charged species considered in this work, the 
rate of convergence with respect to the basis set size is much slower than for the Be 
atom and the positively charged beryllium-like species. The valence electrons in 
the negative ion are much less tightly bound than the corresponding electrons in 
the neutral and positively charged ions and the energy is therefore much more 
sensitive to the degree of completeness of the basis set. This point is demonstrated 
further in Fig. 1. In this Figure it can be seen that the energies of the neutral and 
positively charged species converge at much the same rate. This demonstrates that 

Table 1. Self-consistent-field energies for radial beryllium-like ions using the 
systematic sequence of even-tempered basis sets given by Schmidt and Ruedenberg 
[7] for the beryllium atom in all calculations* 

Set Li- Be B § C 2§ 

[6s] -7.251483 -14.534897 -24.140509 -36.230813 
[8s] -7.340599 -14.566442 -24.222327 -36.370037 
[ 1 0 s ]  -7.375098 -14.571727 -24.234213 -36.401311 
[ 1 2 s ]  -7.392530 -14.572705 -24.236807 -36.406797 
[ 1 4 s ]  -7.402651 -14.572951 -24.237357 -36.408060 
[ 1 6 s ]  -7.409097 -14.573002 -24.237519 -36.408360 
[ 1 8 s ]  -7.413453 -14.573017 -24.237559 -36.408456 
[ 2 0 s ]  -7.416529 -14.573021 -24.237570 -36.408484 

N 3+ 04+ F 5+ Ne 6+ 

[6s] -50.707427 -67.556801 -86.799882 -108.369858 
[ 8 s ]  -51.013464 -68.141040 -87.721091 -109.752689 
[ 1 0 s ]  -51.068088 -68.229240 -87.888102 -110.039519 
[ 1 2 s ]  -51.078704 -68.251575 -87.923368 -110.092447 
[ 1 4 s ]  -51.081409 -68.256090 -87.931103 -110.106434 
[ 1 6 s ]  -51.082079 -68.257228 -87.933262 -110.109737 
[ 1 8 s ]  -51.082241 -68.257567 -87.933821 -110.110602 
120s]  -51.082290 -68.257669 -87.933972 -110.110885 

* All energies are in Hartree atomic units. 
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Table 2. Correlation energies for radial beryllium-like ions using the 
systematic sequence of even-tempered basis sets given by Schmidt and 
Ruedenberg [7] for the beryllium atom in all calculations* 

Set Li- Be B + C z+ 

[6s] 15.302 17.140 17.435 15.687 
[8s] 16.444 18.089 17.250 17.238 
[10s] 17.079 18.322 17.581 17.101 
[12s] 17.469 18.384 17.622 17.207 
[14s] 17.859 18.421 17.639 17.244 
[16s] 18.113 18.434 17.655 17.251 
[18s] 18.477 18.440 17.662 17.259 
[20s] 18.725 18.444 17.666 17.264 

N 3+ 04+ F 5+ Ne 6+ 

[6s] 16.653 17.193 16.192 15.055 
[8s] 16.579 16.308 16.515 16.539 
[10s] 16.900 16.786 16.541 16.408 
[12s] 16.971 16.759 16.662 16.583 
[14s] 16.980 16.820 16.688 16.579 
[16s] 17.003 16.828 16.699 16.607 
[18s] 17.009 16.848 16.710 16.612 
[20s] 17.013 16.840 16.713 16.616 

*All energies are in millihartree with signs reversed. The correlation 
energies given are [2/1] Pad6 approximants to the many-body 
perturbation expansion through third-order using a matrix Hartree- 
Fock zero-order operator. 

35 

O . O -  

LU -2.0 - 

0~ ~4.0 - 

.r- -6 .0  

-8 .0 

9 
t~ 
i i i  

I 
=r~ -10.0- 
L5 
ILl 
v 

.E 
-12.0 - 

Li- 

Ne 6+ 
F5+ 

\ 
-..... - . . . \ --  

' , ~  B +  

~ Be 

8S los 12S 14-S 16S 1;S 20S 

Basis Set 

Fig. 1. Plot of In (E[n"s]-E[n's]) against basis set size for the self-consistent-field energies 
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Fig. 2. Plot of the correlation energy, given by the [2/1] Pad~ approximant to the third-order energy, 
against basis set size 

there is little dependence on the precise nature of the beryllium-like entity being 
studied while a series of basis sets specifically designed for the beryllium atom is 
being employed. For the Be atom the difference between the matrix Hartree-  
Fock energy calculated with the [18s] basis set and that calculated with the [20s] 
basis set is 0.004mH, for B § this difference increases to 0.011 mH, for C 2+ 
0.028 mH, for N 3+ 0.049mH, for O 4+ 0.102 mH, F 5+ 0,151mH and Ne 6+ 
0.283 mH. The degree of convergence, as measured by the difference between 
E[20s] and E[18s], deteriorates slightly as the nuclear charge is increased but 
nevertheless is still within 1 mH, which is usually regarded as "chemical 
accuracy". On the other hand, for the Li- ion, the difference between E[18s] and 
E[20s] is approximately 3 mH. 

In contrast to the matrix Hartree-Fock energies given in Table 1, the correlation 
energies given in Table 2 do not always decrease with an increase in the size of the 
basis set. These correlation energies are calculated perturbatively and do not, 
therefore, provide rigorous upper bounds to the energy. Convergence does, 
however, appear to be fairly uniform for basis sets larger than the [12s] set as is 
shown in Fig. 2. Again for the only negative ion studied, Li-, there is a strong 
dependence on the degree of completeness of the basis set. Even for the largest 
basis sets considered in the present work, the results for the Li- ion are still basis 
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set dependent.  For the Be atom and all of the positive ions the difference between 
E[18s]  and E[20s l  is less than 10 ~H. For the Li-  ion this difference is - 2 5 0  ~H. 

Following the work of Schmidt and Ruedenberg [7], we have used the results 
presented in Tables 1 and 2 to derive empirical upper bounds and lower bounds to 
the total energies of each of the systems considered in this paper in the s basis set 
limit. The Hart ree  extrapolation [25,261, which may be written as 

E~[n'" s] = (E[n"' s]E[n ' s] - E [ n "  slZ)/(E[n'"s] - 2E[n"  s] + E[n '  s]) 

where n', n", n"' are successive values of n, provides an empirical upper bound to 
the basis set limit [71. However,  it should be used with care and applied to a series 
of energy values to ensure that the energy is a reasonably smooth function of the 
basis set size. Hartree 's  extrapolation technique is based on the assumption that 

(E[n"s  ] - E~ )  = m (E[n ' s ] - E~ )  

where Eoo is the true basis set limit. By considering three successive values of 
E[ns],  we can eliminate m and thus obtain an estimate of E~, which we denote by 
Eo~[ns]. We can also find a value of m by considering three successive energy 
values and eliminating Eoo, giving 

m = ( E [ n " ' s ] - E [ n " s ] ) / ( E [ n " s l - E [ n ' s ] ) .  

The value of .m[ns] provides a useful indicator of the convergence properties of 
the energy values with increasing basis set size. If Im]< 1 then the series of energy 
values is converging, whereas if Iml> 1 it is diverging. If m > 0 then the series of 
energy values behaves monotonically, while if m < 0 then the series is oscillatory. 
Schmidt and Ruedenberg [7] have proposed that the expression 

E~[ns  ] = IFoo[ns ] - (E[ns ] - E~[ns])  

provides an empirical lower bound to the basis set limit. They demonstrated the 
use of this formula for a number of atoms within the Har t ree-Fock  model. The 
present author has investigated the use of this empirical procedure for calculations 
which include electron correlation effects [8]. The average energy [7] 

Ea~ [ns] = ~ (Eoo[ns] + / ~ [ n s ] )  

may be regarded as a "best"  estimate of the basis set limit and the difference [7] 

O[ns] = ~ (E~[nsl-  ~Ansl )  

as an estimate of the accuracy which may be given to this "best"  value. 

In Table 3, we give values of the empirical upper bound, Eo~[ns], the empirical 
lower bound, E~[ns] ,  the "best"  energy, Ea~[ns], and Dins] ,  the estimated 
accuracy, for the Har t ree-Fock  calculations described above. The corresponding 
quantities for energies which include correlation effects given in Table 2 are 
displayed in Table 4. For all of the calculations performed in this work, it can be 
seen from Tables 3 and 4 that D[18s]  > D[20s]  indicating that convergence with 
respect to basis set size is being obtained. However,  the values of D[ns]  obtained 
for Li-  are considerably larger than those obtained for the neutral and positively 
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Table 3. Empirical upper and lower bounds to the Hartree-Fock energy, "best" 
Hartree-Fock energy values and estimated accuracy* 

S. Wilson 

System Eoo[ns] Eoo[ns] Ea~[ns] D[ns] 

Li- [18s] -7.42254 -7.43162 -7.42708 4.54 
[20s] -7.42391 -7.43129 -7.42760 3.69 

Be [18s] -14.57302 -14.57303 -14.57303 0.00 
[20s] -14.57302 -14,57303 -14.57302 0.00 

B + [18s] -24.23757 -24.23759 -24.23758 0.01 
[20s] -24.23757 -24.23759 -24.23758 0.00 

C 2+ [18s] -36.40850 -36.40855 -36.40852 0.02 
[20s] -36.40850 -36.40851 -36.40850 0.01 

N 3+ [18s] -51.08229 -51.08234 -51.08232 0.03 
[20s] -51.08231 -51.08233 -51.08232 0.01 

04+ [18s] -68.25771 -68.25786 -68.25778 0.07 
[20s] -68.25771 -68.25776 -68.25774 0.02 

F S+ [18s] -87.93402 -87.93421 -87.83411 0.10 
[20s] -87.93403 -87.93408 -87.93406 0.03 

Ne 6+ [18s] -110.11110 -110.11122 -110.11106 0.15 
[20s] -110.11102 -110.11116 -111.11109 0.07 

*All energies are in Hartree atomic units; D[ns] is in millihartree. 

c h a r g e d  spec ies .  S imi la r ly ,  fo r  all  of  t h e  e n e r g i e s  Eav[ns] g i v e n  in T a b l e s  3 a n d  4 

t h e r e  is a c h a n g e  of  less t h a n  80 I~H b e t w e e n  t h e  resu l t s  o b t a i n e d  us ing  t h e  [18s ]  

a n d  t h e  [20s ]  basis  se t  fo r  t h e  b e r y l l i u m  a t o m  a n d  the  p o s i t i v e  ions.  F o r  t h e  L i -  i on  

this  d i f f e r e n c e  is less t h a n  1 m H .  

Table 4. Empirical upper and lower bounds to the [2/1] Pad6 approximant to the 
total energy; "best" total energy values and estimated accuracy* 

System Eoo[ns] Eoo[ns] Ea~[ns] D[ns] 

Li- [18s] -7.44202 -7.45211 -7.44707 5.05 
[20s] -7.44362 -7.45198 -7.44780 4.18 

Be [18s] -14.59147 -14.59148 -14.59147 0.01 
[20s] -14.59147 -14.59147 -14.59147 0.00 

B § [18s] -24.25524 -24.25525 -24.25525 0.01 
[20s] -24.25524 -24.25525 -24.25525 0.01 

C 2§ [18s] -36.42577 -36.42582 -36.42580 0.03 
[20s] -36.42576 -36.42578 -36.42577 0.01 

N 3+ [18s] -51.09931 -51.09936 -51.09933 0.03 
[20s] -51.09933 -51.09935 -51.09934 0.01 

04+ [18s] -68.27455 -68.27470 -68.27463 0.08 
[20s] -68.27456 -68.27460 -68.27458 0.02 

F 5+ [18s] -87.90574 -87.95095 -87.95084 0.10 
[20s] -87.95074 -87.95080 -87.95077 0.03 

Ne 6+ [18s] -110.12752 -110.12783 -110.12768 0.15 
[20s] -110.12764 -110.12778 -110.12771 0.07 

*All energies are in Hartree atomic units; D[ns] is in millihartree. 
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Table 5. Values of m[ns] for n = 18 and 20 
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System Hartree-Fock Energy [2/1] Pad~ Approximant 

m[18s] m[20s] m[18s] m[20s] 
Li- +0.68 +0.71 +0.68 +0.72 
Be +0.30 +0.33 +0.33 +0.38 
B + +0.25 +0.28 +0.26 +0.33 
C z+ +0.32 +0.29 +0.34 +0.32 
N 3+ +0.24 +0.30 +0.24 +0.31 
04+ +0.30 +0.30 +0.30 +0.31 
F s+ +0.26 +0.27 +0.27 +0.27 
Ne 6+ +0.26 +0.33 +0.26 +0.33 

In Table  5 values of m[18s ]  and  m[20s ]  are given for all of the systems examined  

in this work.  All  of the values of m are greater  than  zero indicat ing m o n o t o n i c  
be haviour.  Fu r the rmore ,  for all of the systems s tudied ]m[<  1, indicat ing that  the 
energies  are converging as the basis set is increased in size. 

The  calculat ions repor ted  in this work have demons t r a t ed  that  the concept  of a 
universal  sequence  of basis sets will prove  useful  in systematic a tomic and 
molecular  calculat ions both  within the H a r t r e e - F o c k  mode l  and in calculat ions 

which take account  of e lec t ron correlat ion.  The  systematic sequence  of even-  
t empered  Gauss ian  pr imit ive basis funct ions  given by Schmidt  and R u e d e n b e r g  

[7] for the bery l l ium atom has b e e n  used in a s tudy of eight bery l l ium-l ike  ions. It  
has been  found  to be useful  in calculat ions on  neut ra l  and  posit ive charged species. 
For  L i -  the convergence  with respect to basis set size is not  so good as for the o ther  

systems cons idered  in this work because  of the more  diffuse na tu re  of the orbitals  
involved.  
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